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XXV. On the fluents of irrational functions. By Edward
Ffrench Bromhead, Esq. M. 4. Communicated by J. F.
‘W. Herschel, Esq. F. R. S.

Read June 4, 1816.

T ux efforts of analysts in determining the fluents of rational
functions, have been completely successful, and their labours
form one of the most perfect and beautiful branches of the
fluxionary calculus. In the irrational functions, however, we
find but little effected. With the exception of WaRING,
modern analysts have not added any thing important, to the
forms given by Newrton, Craic, CoTEs, and BERNOULLI.
No attempt has been made to generalize the known forms,
and the last eminent writer on the subject, La Croix, seems
to consider them as independent results, not deducible from
any common principles, and refers us to the Petersburgh
Acts, and other miscellaneous Collections. In the following
pages, it is attempted to generalize and systematize our know-
ledge on this subject; and to show that all the known forms
result from other forms of the greatest extent, not depending
on particular functions, but upon the properties of all rational
_functions whatever.

R, R, R, R, denote rational functions of any kind; R™, R,
R™, R™" their inverse functions. Thus if =R (7) any

rational function of (v), then v = R—1 (z) the inversc
function,
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336 M. BRoMHEAD on the fluents of

It is thought unnecessary to prove, that the fluxions of all
rational functions, and all rational functions of them, are

themselves rational.
Pror. I.

dz . R{x, R"‘(x)} can be rationalized.

Let R (2) =v; x=R (v); dxr =dv . DR (v)*

which substituted produce the rational form
dv.DR (v) . R {R (v),7}
Cor. 1. This form includes
dr .R{z,R™" (2),R (2, R7" (2)),...R (z, R™(2))}

Cor. 2. We may ﬁnd, a priori, what ﬂuents will come under

this form. For let =R (v) any rational function whatever
:+z:.v+ z:.v’-}-...

)

Tada.vFa.vtF ...
Q X 2

which is the general form taken by rational functions, when
the integer powers are expanded, and the fractions reduced
to a common denominator, the coefficients being positive,

negative, or nothing. Hence we have R™" (z) == v, deter-

mined from this equation.

(a.x——o:)+(c‘z..r-—of).v-l-(‘iz.w‘-—o:).v*+...:-_—-..

o

Cor. g. Let the equation be
(a2 — a) 4 (bx +—B) v* =0

oo T e + )7

I

weknowfdt R{x ("’““) }

* Sece Note at the end of the Paper.
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Cor. 4. Let the equation be
- (ar =)t (bx—B). v+ (T ~—y) =0

from which we can determine

¥
— bx—p Dx e 3 |2 ax — a\ 1
ﬁx ‘R {x’ ( 20X =2y i \/(zcx—zy) - C.Z‘--}y) }
and therefore any fluent of the form
fdx. R{x, "/wx 43+ Va4 Bx-{-«y}
It is obvious that these deductions may be carried to any ex-
tent, producing forms hitherto supposed impracticable.

Cor. 5. = _;_' f is both of the form R™"(z) and R** (x).

Prop. II.
We can rationalize

dz R {z, R"(2), R"T"R™"(z),... R 'R...RR™"(2)}
Let R_'“I. ..R™*(x)==v. Then
z=RR...R ('IJ)

R™'z=R...R(v)
&c. = &ec.

which. substituted in the original expression, make it rational.
Cor. 1. If R =R = R, the fluxion becomes

dz . R {z, R (2), R7*(z),...R™"(2)}

Cor. 2. By this theorem, any of the expressions deducible
from Prop. I. may enter contemporaneously, and we may find
fluents of very great intricacy.

Cor g. The fluents

1 -—-—-—-—-—) I
) — a+b"\/o&+ﬁx—"
Jie 1z, o )7 (SRR ]
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fa’w . R{x, \/a-i-m\/b—‘—\/. . ;P\/R"‘ (z), .. }
and some of the most complex expressions in WARING’s
Med. Anal. are very particular cases of this form.

~ Prop. IIL

We can rationalize

I I
r

deR{x,IE-"(LzQ, (l‘{_'(x));i (ll{—l(x)) ;'—,(1} f“(x)‘) sees }
Let R™ (z) == vm-» -7+
Thenx—*R(v”’ mereee)

{R"—‘(x)}m——v” T
1
{I'{""(x)} P
&c. = &c. ’
which substituted make the expression rational.
Cor. 1. The more general form is this :

If R can be so assumed that R~'R, R~ R, 1}"’ 1} shall

m 3

- be all rational; then by assuming I:;{""(x) = 1} (v) we

can render rational
dz.R{z, R~*(z), R R~ (z),... R R™(2)}
Cor. 2. We can find

l l

ﬂx R a, ,2:’", ™ .1:7 }
ﬂx. z, (ax-}nﬁ)m (ax-l-ﬁ)—’-’- }

/dx R{z, (28], (287 .
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4
ﬁx . R{x, V& - faF g, (ax 4 V& 2 +Br o), }
with an indefinite number of forms too complex for conve-
nient expression.
~ Cor. g. This form may be extended to Prop. II. and other

general expressions. Thus we know
1 I

JizR{2,R7'@) RT'R™@),... @R ™'(2) ,"'(13"‘...13“'(@7, .3

The forms given above are wholly inapplicable, when the

Auxion involves expressions, such as R™'R R™... () where

3 z 8
the functions are alternately inverse and direct. The cases
are very few, in which the difficulty can be overcome, and
perhaps the fellowing Propositions will be found to include all
the instances, in which analysts have effected the reduction.

Pror. IV.
We can rationalize

dz.DR (z) . {R(2), R'R(z) |
Let I} () = v, and it becomes
dv . R{v, 11{—’('0)} as in Prop. 1.
Cor. 1. We can generally reduce [dz . D¢ (z) . X (z) to
jEIv - ¢ (v). Thus we deduce from fdx. """ ¢ (2*) the

—_ d
/dv . ¢ (v),and fromf—f.cp (z») thej%f . ¢ (v), reduc-
tions of frequent occurrence, by which analysts have given

their forms an appearance of generalization without the reality.
MDCCCXVI. Yy
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Cor. 2. This form may be extended to all the former
Propositions. o '

Cor. g. As it is very tedious and often impracticable to find
x in terms of v, in order to know whether the reduction be
applicable ; the following process may sometimes be useful.
Let the expression be

dz .DR (z) .RT'R(z). RR(x)
Then if it be divided by dz . DR (z) .R™'R (z) the quo-
tient will be a rational function of R (z) or of the form
N N
SRR (O T

the coeflicients being indeterminate.

If the reduction be applicable, these may be found, and the
substitution made at once,
Cor. 4. We may thus reduce

" —1) e 22
3

fdx. " o™ .. R‘{x"-kxcx”“" + }

to L. R (v), which may be found.
v " ‘
Cor. 5. Indz . &7 (ax™ 4- B)*. R{w.z:" + /3} ‘
divide by dzx . naz"""' . (a2 4 @), and the quotient is

1

L, 2~ R (ax™ -} 8). The latter factor is already of the

na

required form, and by assuming B
2= =g (s B) = . (a2n - B
the indeterminates may be found. In particular cases there
are readier processes, but this method is universally applicable,
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Pror. V.
We can rqti011alize

dr. R {.z:, lx{_'f’} (z) } if we can determine, l‘{-’ln{ (z) =
R (2).R7(z), for the fluxion then becomes
dz . R{w, R(z). I}“‘(x)}as in Prop. L. Cor. 1.
Cor. 1.’ "‘V’Ve also know |
dz. Riz, R~ (2), R R (2)}

Cor. 2. We may thus transform

3

dz . R{z, (5] "V (ex +8) . (ex ) }

into 1 z
x + B\ +8)»
dz . R{z, (Z—;ﬁ) ,(4$+b)~(;;-tb)n}
a known form.
Hence we know

de . R{x, 31/(a’x’——ﬁ‘) . (xxj—_ﬁ)}
Jiz . R{z,V@Fa). (z 70}
Jdz . R{z,V(az FB) . (ax + B}
ﬁx , R{x,V(cx“-[-cl z 4 2}

which last form will sometimes introduce imaginaries, that
may be avoided by particular artifices.

Cor. g. 1t l‘{—' R(z)=(R (%))"- R™ (z)

R R(2) = [R (o)} R0

- &c. = &c.
Yye
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we can determine ) .
Jir R{z, R @), R R} {RTR@®}",..
Cor. 4. IR™R(z)=R (¢) "VR='(2); R'R ()=R (2).
’ ’ "‘/ﬁ:(;); &ec. ..—: &ec.,
we know )
Jdz . Rz, 13—' (2), R R(2),R™'R (2),R=R (z),...}
as in

dz . R{z," /(ax+F) @z 0 '/ (ex 4 B)(aztby—1,. }
Cor. 5. Generally if R (z) and l} (z) are so related,

that R R (z) can =R R (z), R and R being any rational

functions whatever taken at pleasure,then dz.R {w, R™ R(.z:)}

can be rationalized by taking x = R (v). It then becomes
dv.DR(v).R{R (v),R (v)}.

Pror. VI.
By combining Prop. IV. and V, we can rationalize
dx.Dg(x).R{g(x),g--‘I”n}(x)} |
if}_‘;{—-l 1} @ =R (v). l}—’l (v); for let R (z) = v, and it
becomes v " |
dv . R{v, R(v) . R“' (v)} as before.

Cor. 1. If we have

. m o+ BT R ]
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Remove the multiplier z*, as in Prop. V., and it becomes,

m 4 2B
. a" Y (b BT R (o4 B

z
which will fall under Prop. IV. If 27T can be expressed
by a rational function of « <4 Bz=#. This will happen if

f ° .
m -+ -(—12 == =1 .7, 0r 1f1",; +-§-= +rany integer. Hence we

know
L—-——-—[ .R {a 4 bz B"’“}
S (%4 bP)
dr dx . dzx

Vet b ) Va g U WVE=T
Cor. 2. We can determine

j‘ QX e 3 dz :
ax 4 gx" 4 B ‘ Vo2 F cz” + B
which becomes by Prop. 5.

dxn_- — ﬁ.t_n—l Az

NP RPN
Now this falls under Prop. IV. For let

"Woarn 4 L4 c=1v

axh 4 Br—r gy ="y —¢
o (agn—t — Br—n=—1) . dx = vt . dv
Homm?,
Whence the fluxion becomes %—-—-—'—513, of which a particular
Ut y=—c .

case is deduced in LEcenDRE’s Elliptic Transcendents.

Prop. VII.
If we can rationalize

dg . R{x, ¢ (z), 0 (%), - }

we also can
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. R{z, R (2), e R (2), pR™" (2), .. {
for by taking R™' (z) = v, it is reduced to the former form.
Cor. 1. If w; can rationalize
dz . R{m, I.{—l In{(x)}, we also can
dz . R{z,R™ (z), "' RR™ ()}
‘Therefore we can find " .

iz R{z,R™(2), Va4 b R (@) +¢. R (@)}
fdw . R{x, Vo4 pz —[—1/@} &e.

Cor. 2. Generally we can reduce
dr . R{x, RR™...RR™ (D)} to

n n-1X

dz . R{z, R=T... 1}@)}

Cor. g. In fdz , ¢ (x), let v = ¢ (x), and if it be an alge-
braic function, R {x, 7),} = 0. Now take r = R (z)

o4 az -+ a4 & 6+Bz+&c
X 2

= ,andv_R(z)

a4+ ax 4 az* 4 &c. Wlthln-
X 2

— b+beia
determinate coeflicients. |

Hence we have R {f‘i (%), I} (z)} == 0; remove fractions
and make the coeflicients of the powers of g vanish. This

will give the indeterminates, if £ and v admit common ration-
alities. Thence we have dz . DR (%) . R (%) rational.
X 2

Should all the artifices in the foregoing propositions fail,
we must attempt to resolve the fluxion into a serics of terms,
such that each term may be separately rationalized. This is
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often possible, when the original function does not admit a-
rational expression, and can be effected sometimes directly,
and sometimes by introducing a new variable. But it will
first be necessary to reduce all irrational functions whatever
to a definite form.

LemMa,

To reduce all irrational functions to a definite form.

1. By successively multiplying numerators and denomina-
tors into the same expressions, bevery irrational function may
at last be reduced to a series of terms, whose numerators and

denominators do not contain any fraction or negative index.
B

“w
S L ,
Thus_L..__l___ A /2 ) ,and if », B, ¢, @, b, ¢, are
(a - bc—n)m 7. (ﬂcn -+ b)m

functions involving fractions or negative indices, themselves,
the reduction is ¢ontinued in the same manner.

2. Now multiply both the numerators and denominators
of the expressions so reduced, by such multipliers, as will
render the denominators rational, This factor is the product
of all the different values of the denominator, with the excep-
tion of the denominator itself. The new numerators will still
consist of a series of terms not ‘involvihg any fraction or
negative index.

g. If R, lx{, ]5}, &c. denote functions of the form cx™ -

¢ .xm=t . . the irrational takes the form,
3

R (%)

c [
.?(x)d..r.’-l- R(x).alr(x)ﬁ...+..

5

R (2) Ii(x)
e Tre: ¢ )

SN

4 By reducing the fractional indices of the factors to the
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common denominator (%), the whole will consist of a series of
R (%)
terms oY) V(p (x)p - ¢ (z)e...

5e By expanding all the integer powers under the index

—;-; and again reducing the indices of the sums and products,
which are under it, to a common denominator #’; we shall
by continuing the same operations, ultimately reduce the

whole expression, to a series of terms of the form
R(‘C)

R(.r) \/S"'\/S”"\/ .St /R (x)

S denotmg the sum of any number of terms such as follow
it, wherein R (z) may be different in each term, but always

of the form cxm 4 cam—1 4o . | -,
6. If every value of R (x) contains a factor (axr 4

bxr—1 -} ...) n.#". " it may be taken entirely out of the
radical ; and conversely the rational coefficient may be intro-
duced entirely under the radical.

v: When the surd is so reduced, that no rational factor
can be withdrawn from the radical, it is said to be in its
lowest terms; and is said to be an irrational of the 1%, 2¢,

or v* order, according to the number of the indices -:l-, -

n's

— ~. Thus the general expression for a surd of the first

o oY o
n

order
R *
Is a series of terms, o) "V cxm 4 czm—r + .

8. A more convenient general form for all irrationals, than
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the series of terms above exhibited, may readily be found;
by introducing all the rational parts entirely under the radi-
cals; by reducing the indices of all the terms to a common
denominator u; by expanding all integer powers; and by

again reducing all the products and sums contained under —3-’

to indices with a common denominator p'. These operations
continued, will ultimately lead to the expression

v u Wei IR (@) R (x) ,
S \/S \/S \/E___),where;()maybe of any diffe-
(= R
B8 B

rent values in the different sums, but always of the form

@ P
ax + ax !
i

+ ..

[ P
R (%) »
9. ———; 5 is said to be of « = 8 dimensions; and if « — 3 be

dimensions of that rational part, whose dimensions are great-
a—fB .

[
LY

oo
10. The fluxion, and its dimensions in any irrational, may

est; then the dimensions of the whole irrational are

be found by applying this formula, d {@’ 0 ...0 (x)}
=D?<f..<p(x).D<f?..?(x)...Dq>(x) . dzr, the D
only referring to the functional characteristic immediately
succeeding it.
Prop. VIIL.
To divide a fluxion into expressions admitting distinct ra-

tionalities.
MDCCOXVI, Zz
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Let ¢ (x) be any irrational, and ¢ (), ¢ (z) &c. surds

deduced as in the Lemma. Then
dz . R x) dx . R ()

/diz: ¢ (x) f R @ + 0 (z) 4 &c.

where the fluent of the 1st term may always be found, and
the other terms may often be rationalized by distinct substi-
tutions, when we are unsuccessful with fdz. . ¢ (). Again
since in each of the terms,

dx . R () R (2)
) /:-33‘ o ? (2), G o) may be reduced to a series of terms

of the form Az» and therefore the fluent depends

—A .,

Grao’
‘on a series of terms fdz . z* . ¢ (x), and fa’x (z4a)T" g (2).

- In the latter case, the form of ¢ (&) is not changed by sub-
stituting x for 4 a, and .. the fluents of all irrationals are
‘determinable by fdz . z%% . ¢ (2).

Cor. 1. If we multiply the denominator of
dz . R (2)
R(x) Vax* & b +I)x+ ¢ -+ R(x) yax® +ﬁx 4y

by its 1atlonahzmg factor, the fluxion will be reduced to two
terms, which admit distinct rationalities.

Cor. 2. Sometimes by the substitution of a new variable,
for some function of z, the fluxion will be divided into a series
of terms, each of which may be separately made rational.
‘But unfortunately no general principle has been discovered,
to which these reductions can be referred. ‘

Cor. 3. As the fluent of each term can sometimes be found
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apart, when the fluent of the whole cannot be found at once;
so conversely, the fluent of a series of terms may be found,
when each separate term surpasses the powers of analysis.

Thus we know
do(2) + de(2) + .
/ HOEEIOE IS

But we do not know

do(x) a9 (%)
/z:(x)+<g(x) +-..+/;(x)‘+g(x)+ v

Agairj, let ¢ (x) be such a function of z,

thatcp’(x}:—_-‘z—#; let ¢ () = x; .
Thenfdr . ¢ () =z.0(z) —Jfdo(z) . x
=z.0(@)—fdo(z).0°(x).¢
=z.z ——efd{:,q>(al:)
.‘.j’dx.fp(x)+efdx.<p(x):=x..i

Which theorem admits farther extensmn and may be applied
to elliptic arches.

Should the above processes for rendering the fluxion
rational fail us, we must attempt the fluxion at once in its irra-
tional state, for which purpose I shall add a few miscellaneous
observations,

1. If ¢ (2), ¢ (x) be any algebraic functions,

d q)(.t)
then a’{(p (z) 4 log. ¢ (x)} =do (#) + —= e is an alge-

braic expression. Whenever, therefore, we meet with an
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algebraic fluxion, we may legitimately try ¢ (@) + log. ¢ (x),

as a form to which the fluent may possibly belong.*

2. It presents three cases: 1st. where the fluent is wholly
algebraic, for which we assume some expression so general,
that its fluxion will include the given fluxion, if it admit an
algebraic fluent; or we find the fluent implicitly by an equa-
tion: e¢dly. where the fluent is mixed, when we attempt to
separate the algebraic part: gdly. where the fluent is purely
logarithmic, when we assume, as in the first case, some ex-
pression with indeterminate constants, sufficiently general to
include the given fluxion.

8. In'assuming for an algebraic fluxion, it must be observed,
that the fluent will always be a surd of the same order as the
fluxion. On this principle WARING gives some assumptions
for surds of the second order, but nothing has been attempted
generally for surds of all orders, for want of some definite form
which should include them all. In irrationals of the first order,
the fluxion may always be reduced to series of terms, such as

vdx.(x-{—a)“. (x-{-a}‘g... (J:-{-a)
1 2 n
where the factors are all different, and where the indices are
positive, negative, fractions, integers, or unity. Then let

R (@) be any expression ca”~"' -} ¢ca"~* 4 . . . with inde-
1 1z

o
terminate coefficients. Assume for the fluent
(x + ﬂ)“'*" . (x + r;)B'“ e (x + c;)"‘“

R (x)

N1

* It is obvious, that the fluent of an algebraic fluxion cannot be of the form

) do (x)
o) + ¢ (a). log. (f (), for its Aluxion dp (2) + dc; (x) . log. ¢ (2) + oz . f((,
2 % : 3 oz
is a transcendent. ~ ®
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Its fluxion will be ‘
R N R
{ims 8
_l:—l(x).{(a + 1), (¥ +o:) ..(.a:+c’zt)+(6+ 1).(z + (:) oo (® + t’z’)-l—.}
e 7
N §

multiplied by do . (# 4 @)*. . . (¥ 4 a)’ the original fluxion.

Now that the two expressions may be equal, the coefficient
found above must be = 1, or we must have

DR (£).Q—R (2).Q'={R ()}’

N 1 el § N1
where Q and Q' are the expressions in the coeflicient involv-
ing a, a, a. By equating the terms in this equation, the inde-
T $ n . :

terminates c, ¢, ¢, &c. may be found; but the reduction will
2

often be impossible, as there are more equations to be satis-
fied than there are indeterminates. :

4. If any index @, B, y =—1, the expression fails, and there
is no algebraic fluent ; also WarinG says, that if the dimen-
sions of a fluxional coefficient be == — 1, the fluent cannot
be algebraic.

5. If ¢ (x) be an irrational function, let 2 = Jdz . ¢ (x)

= [dx . v; then since R{w, v} = o, there are cases, where we

can determine, R{ z, z} = 0.%

6. If ¢ (x),rm- () be irrational functions of @, we have

fdwcp(w)=fdw {<p(w) + r}r(m)} ;_J[,J{T_W((T)
Now let # () be so assumed, that

# See Phil, Trans, 1764.—EMBRsan’s Fluxions,
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j’dm . {q; (%) 4 = (w)} = ¢ (#), and we have
fdxl co(®) = ¢ (w)-——/a’m .7 (®).

If therefore = (#) be a simpler expression than ¢ (&), the

fluxion will be reduced to a simpler form. In order to find
w(@); ¢ (#)is assumed with indeterminate coefficients, so
; !

that its fluxion may be of the same form as dz . ¢ (#). Now
equate the similar terms in the two expressions, and the inde-
terminates may be found. But as there may be more equa-
tions than indeterminates, we add = («) a function of the
same form, and containing indeterminates of sufficient num-
ber, to satisfy all the deficient equations. 'We shall thus have

Do(@)=¢ () + = (v) and - ¢ (v) = [du. {o(@) 4 = (@)}
by which the difficulty may be reduced to finding fdz . = ().
Reductions of particular kinds were discovered by Simpson
and others, but this is universally applicable. -

7. It may be of advantage to reduce the index of the vari-
able under the radical, which may sometimes be effected. In

X
dx . {w"’”"‘ + 1}", assume a™¥" | 1 = on;
Then we have
m-n
dx . {w +1}—m+n dv . v . (v"— )""""

And in the same manner surds of one order may be trans-
formed into another.

1

8. If the fluent be wholly logarithmic, we may assume for
irrationals of the first order

og. {R(@)+R (). (40 (¢ + bf... + R (). <w+f>’ -+ }
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9. I shall conclude by observing that the fluxion may al-
ways be made rational, if the fluent be wholly algebratc, or
wholly logarithmic. Thus, if ¢ (@) be any algebraic function,
take x =¢~' R (v),

Thendp (x) =d (e " R(v)) =dR (v)

; dR
and d (log.o(@)) =d (log. eo=* R(9)] = 77
are both rational. If the fluent be of the mixed form

¢ (x) 4 log. ¢ (&), its fluxion may be made rational, if R, R,
can be so assumed that ¢—1 R'(m) = ¢—1R (@) ; and it may

always be effected by introducing two new variables.
First let # = ¢=t R (v), and the fluxion becomes

d(@@"‘R )

dR (v) 4+ —

?fp'“‘ R(@)
dR (2)

s now let v = R—1¢o—! R (2), an

which is wholly rational,

we getd R (v) 4

R (®)
EDWARD FFRENCH BROMHEAD.

Note.—As modern analysts have in general confounded the fluxions, either with
the increments or the derived functions, it may not be superfluous to state precisely,
what is meant by the symbols d and D.

If it be possible, (which must be shown in each particular case) to expand ¢ (2 +v)
in the form ¢ (x) + ?(x) — ;p (x) . v* 4 s then q'p(x) is called the derived

fanction of ¢ (%), and its relation to ¢ (x) is thus expressed, ¢ (2) = Dg (2). Hence,
> z

if # be considered a function of itself, we have (x -+ v) = (2) + D (x) . v, and -,
D(z) =1

Now to avoid a constant reference to the variable », of which other variables are
considered as functions, we introduce fluxions. Ify, %, w, ... are functions of the
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same variable, then dy, d=, dw, . . are expressions proportional to the derived func.-
tions of ¥, z, w, . . whatever may be the variable of which they are common func-

. dy Dy . . — dy _
tions, Hence o D’ and if y be a function of &, or = ¢ (M, then =

D
f)frz) = Dg («) and .-, dy = dr . Dp ().

Moreover, since the derived functions are in the limiting ratio of the increments, so
also are the fluxions, From this consideration we can in the applications of analysis,
practically determine the ratio of the fluxions, when the derived functions are
unknown,

ERRATA,

Page 72, line 20, for parts, read part.

s 73, line 3, for between, read below.

e 08, line 4 from bottom, dele the comma after A.
101, line 6 from bottom, dele BH.

e 102, line 4, for azes, read axis.

e 164, line 11, dele the comma between m and #.
e 174, line 7, for consisted of, read consisted in.
e ey line last, for m, n, read m, m.

e 191, line 13, for ¢p "z, read ¢ @z. :

— 213, line 14, for J# 4 (%, y), read ¢? ¥ (2, 3).

214, line 10, dele ¢ in an infinite number of ways”.
~—— 224, line 22, for f(a), read f(x).:

—— 220, line 24, for = 2, read = z.

—— 232, line 16, in the denominator, for 1—, read 1.
e ey 1in€ 18, ditto, ditto, for 1=, read 17k.

1 1
d x, ?y-) dy (x,-?)
dz
s ey 1in€ 11, for d in both numerator, read d2.
omen e line 13, for (.2.) read & ¢ (i)
Jy y

—— 251, line g, for read



